4 resultados para PHYLOGENY

em Aquatic Commons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

About 40 years have passed since the discovery of picophytoplankton; the present knowledge of the taxonomy, physiology and ecology of these tiny photoautotrophic cells offers new perspectives on the importance of the microbial contribution to global biogeochemical cycles and food webs. This review focuses on the relationships among the components of picophytoplankton (picocyanobacteria and the picoplanktic eukaryotes) and biotic and abiotic environmental factors. The dynamics of picophytoplankton in aquatic ecosystems are strictly dependent upon basin size and trophy, temperature, and nutrient and light limitation, but they are also regulated by grazing and viral-induced lysis. The review considers: the pros and cons of the molecular approach to the study of the taxonomy of freshwater Synechococcus spp.; the importance of ecological aspects in understanding the puzzle of picophytoplankton phylogeny (genotype vs ecotype); and the role of biotic vs abiotic interactions in controlling picophytoplankton dynamics. Biotic, top-down control mechanisms are reviewed as well as knowledge of other biological interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

About 40 years have passed since the discovery of picophytoplankton; the present knowledge of the taxonomy, physiology and ecology of these tiny photoautotrophic cells offers new perspectives on the importance of the microbial contribution to global biogeochemical cycles and food webs. This review focuses on the relationships among the components of picophytoplankton (picocyanobacteria and the picoplanktic eukaryotes) and biotic and abiotic environmental factors. The dynamics of picophytoplankton in aquatic ecosystems are strictly dependent upon basin size and trophy, temperature, and nutrient and light limitation, but they are also regulated by grazing and viral-induced lysis. The review considers: the pros and cons of the molecular approach to the study of the taxonomy of freshwater Synechococcus spp.; the importance of ecological aspects in understanding the puzzle of picophytoplankton phylogeny (genotype vs ecotype); and the role of biotic vs abiotic interactions in controlling picophytoplankton dynamics. Biotic, top-down control mechanisms are reviewed as well as knowledge of other biological interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Random Amplified Polymorphic DNA (RAPD) markers and cytochrome b (Cyt-b) gene sequences were utilized to fingerprint and construct phylogenetic relationships among four species of mackerel commonly found in the Straits of Malacca namely Rastrelliger kanagurta, R. brachysoma, Decapterus maruadsi and D. russelli. The UPGMA dendogram and genetic distance clearly showed that the individuals clustered into their own genus and species except for the Decapterus. These results were also supported by partial mtDNA cytochrome b gene sequences (279 bp) which found monotypic sequence for all Decapterus studied. Cytochrome b sequence phylogeny generated through Neighbor Joining (NJ) method was congruent with RAPD data. Results showed clear discrimination between both genera with average nucleotide divergence about 25.43%. This marker also demonstrated R. brachysoma and R. kanagurta as distinct species separated with average nucleotide divergence about 2.76%. However, based on BLAST analysis, this study indicated that the fish initially identified as D. maruadsi was actually D. russelli. The results highlighted the importance of genetic analysis for taxonomic validation, in addition to morphological traits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phylogenetic relationships among all described species (total of 12 taxa) of the decapoda, were examined with nucleotide sequence data from portions of mitochondrial gene and cytochrome oxidase subunit I (COI). The previous works on phylogeny proved that the mitochondrial COI gene in crustacean is a good discriminative marker at both inter- and intra-specific levels. We provide COI barcode sequences of commertial decapoda of Oman Sea, Persian Gulf, Iran. Industrial activities, ecologic considerations, and goals of the decapoda Barcode of Life campaign make it crucial that species of the south costal be identified. The reconstruction of evolut phylogeny of these species are crucial for revealing stock identity that can be used for the management of fisheries industries in Iran. Mitochondrial DNA sequences were used to reconstruct the phylogeny of the Penaeus species of marine shrimp. For this purpose, DNA was extracted using phenol- chloroform well as CTAB method. The evolutionary relationships among 12 species of the decapoda were examined using 610 bp of mitochondrial (mt) DNA from the cytochrome oxidase subunit I gene. Finally the cladograms were compared and the resulted phylogenetic trees confirmed that the Iran's species origin is Indo-west pacific species. Iran's species, which were not grouped with the other decapoda taxa seem to always form a sister clade with Indo-west pacific species with strong bootstrap support 100%. The result completely agrees with the previously defined species using morphological characters.However, we still lack any comprehensive and clear understanding of phylogenetic relationships in this group.